https://nova.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Magnetoelastic coupling and multiferroic ferroelastic/magnetic phase transitions in the perovskite KMnF₃ https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:28624 Pm̅3m →(Tc₃ = 185 K) → phase II, I4/mcm →(Tc₂ =TN = 87 K) → phase III, antiferromagnetic, Cmcm → (Tc₃ = 82 K) → phase IV, canted ferromagnet, Pnma. It is concluded that observed changes in the elastic properties can be explained simply in terms of strain/order parameter coupling for the octahedral tilting transitions. There appears to be no evidence in the present data or in data from the literature for coupling between the magnetic order parameter and shear strains. Any coupling between the magnetic and structural transitions is therefore weak, probably occurring only biquadratically through a small common volume strain. The combined data show unambiguously that, for the crystal used, the Néel point and the structural transition at 87 K are coincident. In other crystals, with slightly different stoichiometries and defect contents, this need not be the case, however, and the overlap of transition temperatures in KMnF₃ is essentially accidental. Strong acoustic dissipation at ∼0.1–1 MHz in the stability field of phase II is attributed to the local mobility of transformation twin walls under externally applied stress. A Debye-like loss peak near 130 K is attributed to pinning of at least some twin walls by defects, but relatively high levels of acoustic dissipation below this freezing temperature imply that some of the twin walls remain mobile due to weak pinning or the absence of any pinning. Acoustic losses continue in the stability field of phase III (Cmcm) but diminish substantially in the stability field of phase IV (Pnma), implying quite different twin mobilities in the different structure types. Overlap of the structural and magnetic instabilities in KMnF₃ opens up possibilities for manipulation of ferroelastic twinning by application of a magnetic field and for creation of materials in which the ferroelastic twin walls have quite different magnetic properties from the matrix in which they lie.]]> Wed 11 Apr 2018 15:47:04 AEST ]]> Ferroelasticity, anelasticity and magnetoelastic relaxation in Co-doped iron pnictide: Ba(Fe0.957Co0.043)2As2 https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:34762 0.957Co0.043)2As2 by Resonant Ultrasound Spectroscopy as a function of temperature and externally applied magnetic field. Non-linear softening and stiffening of C66 in the stability fields of both the tetragonal and orthorhombic structures has been found to conform quantitatively to the Landau expansion for a pseudoproper ferroelastic transition which is second order in character. The only exception is that the transition occurs at a temperature (TS ≈ 69 K) ~10 K above the temperature at which C66 would extrapolate to zero ( T*CE59 K). An absence of anomalies associated with antiferromagnetic ordering below TN ≈ 60 K implies that coupling of the magnetic order parameter with shear strain is weak. It is concluded that linear-quadratic coupling between the structural/electronic and antiferromagnetic order parameters is suppressed due to the effects of local heterogeneous strain fields arising from the substitution of Fe by Co. An acoustic loss peak at ~50-55 K is attributed to the influence of mobile ferroelastic twin walls that become pinned by a thermally activated process involving polaronic defects. Softening of C66 by up to ~6% below the normal - superconducting transition at TC ≈ 13 K demonstrates an effective coupling of the shear strain with the order parameter for the superconducting transition which arises indirectly as a consequence of unfavourable coupling of the superconducting order parameter with the ferroelastic order parameter. Ba(Fe0.957Co0.043)2As2 is representative of 122 pnictides as forming a class of multiferroic superconductors in which elastic strain relaxations underpin almost all aspects of coupling between the structural, magnetic and superconducting order parameters and of dynamic properties of the transformation microstructures they contain.]]> Tue 03 Sep 2019 18:11:39 AEST ]]>